94 research outputs found

    Electromagnetic Klein-Gordon and Dirac equations in scale relativity

    Full text link
    We present a new step in the foundation of quantum field theory with the tools of scale relativity. Previously, quantum motion equations (Schr\"odinger, Klein-Gordon, Dirac, Pauli) have been derived as geodesic equations written with a quantum-covariant derivative operator. Then, the nature of gauge transformations, of gauge fields and of conserved charges have been given a geometric meaning in terms of a scale-covariant derivative tool. Finally, the electromagnetic Klein-Gordon equation has been recovered with a covariant derivative constructed by combining the quantum-covariant velocity operator and the scale-covariant derivative. We show here that if one tries to derive the electromagnetic Dirac equation from the Klein-Gordon one as for the free particle motion, i.e. as a square root of the time part of the Klein-Gordon operator, one obtains an additional term which is the relativistic analog of the spin-magnetic field coupling term of the Pauli equation. However, if one first applies the quantum covariance, then implements the scale covariance through the scale-covariant derivative, one obtains the electromagnetic Dirac equation in its usual form. This method can also be applied successfully to the derivation of the electromagnetic Klein-Gordon equation. This suggests it rests on more profound roots of the theory, since it encompasses naturally the spin-charge coupling.Comment: 14 pages, no figure

    Dirac Equation in Scale Relativity

    Get PDF
    The theory of scale relativity provides a new insight into the origin of fundamental laws in physics. Its application to microphysics allows to recover quantum mechanics as mechanics on a non-differentiable (fractal) space-time. The Schr\"odinger and Klein-Gordon equations have already been demonstrated as geodesic equations in this framework. We propose here a new development of the intrinsic properties of this theory to obtain, using the mathematical tool of Hamilton's bi-quaternions, a derivation of the Dirac equation, which, in standard physics, is merely postulated. The bi-quaternionic nature of the Dirac spinor is obtained by adding to the differential (proper) time symmetry breaking, which yields the complex form of the wave-function in the Schr\"odinger and Klein-Gordon equations, the breaking of further symmetries, namely, the differential coordinate symmetry (dxΌ↔−dxÎŒdx^{\mu} \leftrightarrow - dx^{\mu}) and the parity and time reversal symmetries.Comment: 33 pages, 4 figures, latex. Submitted to Phys. Rev.

    Emergence of complex and spinor wave functions in scale relativity. I. Nature of scale variables

    Full text link
    One of the main results of Scale Relativity as regards the foundation of quantum mechanics is its explanation of the origin of the complex nature of the wave function. The Scale Relativity theory introduces an explicit dependence of physical quantities on scale variables, founding itself on the theorem according to which a continuous and non-differentiable space-time is fractal (i.e., scale-divergent). In the present paper, the nature of the scale variables and their relations to resolutions and differential elements are specified in the non-relativistic case (fractal space). We show that, owing to the scale-dependence which it induces, non-differentiability involves a fundamental two-valuedness of the mean derivatives. Since, in the scale relativity framework, the wave function is a manifestation of the velocity field of fractal space-time geodesics, the two-valuedness of velocities leads to write them in terms of complex numbers, and yields therefore the complex nature of the wave function, from which the usual expression of the Schr\"odinger equation can be derived.Comment: 36 pages, 5 figures, major changes from the first version, matches the published versio

    Emergence of complex and spinor wave functions in Scale Relativity. II. Lorentz invariance and bi-spinors

    Full text link
    Owing to the non-differentiable nature of the theory of Scale Relativity, the emergence of complex wave functions, then of spinors and bi-spinors occurs naturally in its framework. The wave function is here a manifestation of the velocity field of geodesics of a continuous and non-differentiable (therefore fractal) space-time. In a first paper (Paper I), we have presented the general argument which leads to this result using an elaborate and more detailed derivation than previously displayed. We have therefore been able to show how the complex wave function emerges naturally from the doubling of the velocity field and to revisit the derivation of the non relativistic Schr\"odinger equation of motion. In the present paper (Paper II) we deal with relativistic motion and detail the natural emergence of the bi-spinors from such first principles of the theory. Moreover, while Lorentz invariance has been up to now inferred from mathematical results obtained in stochastic mechanics, we display here a new and detailed derivation of the way one can obtain a Lorentz invariant expression for the expectation value of the product of two independent fractal fluctuation fields in the sole framework of the theory of Scale Relativity. These new results allow us to enhance the robustness of our derivation of the two main equations of motion of relativistic quantum mechanics (the Klein-Gordon and Dirac equations) which we revisit here at length.Comment: 24 pages, no figure; very minor corrections to fit the published version: a few typos and a completed referenc

    Resolution-scale relativistic formulation of non-differentiable mechanics

    Full text link
    This article motivates and presents the scale relativistic approach to non-differentiability in mechanics and its relation to quantum mechanics. It stems from the scale relativity proposal to extend the principle of relativity to resolution-scale transformations, which leads to considering non-differentiable dynamical paths. We first define a complex scale-covariant time-differential operator and show that mechanics of non-differentiable paths is implemented in the same way as classical mechanics but with the replacement of the time derivative and velocity with the time-differential operator and associated complex velocity. With this, the generalized form of Newton's fundamental relation of dynamics is shown to take the form of a Langevin equation in the case of stationary motion characterized by a null average classical velocity. The numerical integration of the Langevin equation in the case of a harmonic oscillator taken as an example reveals the same statistics as the stationary solutions of the Schrodinger equation for the same problem. This motivates the rest of the paper, which shows Schrodinger's equation to be a reformulation of Newton's fundamental relation of dynamics as generalized to non-differentiable geometries and leads to an alternative interpretation of the other axioms of standard quantum mechanics in a coherent picture. This exercise validates the scale relativistic approach and, at the same time, it allows to envision macroscopic chaotic systems observed at resolution time-scales exceeding their horizon of predictability as candidates in which to search for quantum-like dynamics and structures.Comment: 30 pages, 4 figure
    • 

    corecore